Support Vector Learning for Fuzzy Rule - Based Classi cation Systems
نویسندگان
چکیده
|To design a fuzzy rule-based classi cation system (fuzzy classi er) with good generalization ability in a high dimensional feature space has been an active research topic for a long time. As a powerful machine learning approach for pattern recognition problems, support vector machine (SVM) is known to have good generalization ability. More importantly, an SVM can work very well on a high (or even in nite) dimensional feature space. This paper investigates the connection between fuzzy classi ers and kernel machines, establishes a link between fuzzy rules and kernels, and proposes a learning algorithm for fuzzy classi ers. We rst show that a fuzzy classi er implicitly denes a translation invariant kernel under the assumption that all membership functions associated with the same input variable are generated from location transformation of a reference function. Fuzzy inference on the IF-part of a fuzzy rule can be viewed as evaluating the kernel function. The kernel function is then proven to be a Mercer kernel if the reference functions meet certain spectral requirement. The corresponding fuzzy classi er is named positive de nite fuzzy classi er (PDFC). A PDFC can be built from the given training samples based on a support vector learning approach with the IF-part fuzzy rules given by the support vectors. Since the learning process minimizes an upper bound on the expected risk (expected prediction error) instead of the empirical risk (training error), the resulting PDFC usually has good generalization. Moreover, because of the sparsity properties of the SVMs, the number of fuzzy rules is irrelevant to the dimension of input space. In this sense, we avoid the \curse of dimensionality." Finally, PDFCs with di erent reference functions are constructed using the support vector learning approach. The performance of the PDFCs is illustrated by extensive experimental results. Comparisons with other methods are also provided. Keywords|Fuzzy systems, statistical learning theory, support vector machines, fuzzy classi er, kernel methods, pattern classi cation.
منابع مشابه
Ieee Transactions on Signal Processing
|Two training algorithms for self evolving neural networks are discussed for rule based data analysis. E cient classi cation is achieved with less number of automatically added clusters and application data is analysed by interpreting the trained neural network as a fuzzy rule based system. Learning Vector Quantisation algorithm has been modied acquiring the self evolvement character in the pro...
متن کاملSome Approaches to Improve the Interpretability of Neuro-Fuzzy Classi ers
Neuro-fuzzy classi cation systems make it possible to obtain a suitable fuzzy classi er by learning from data. Nevertheless, in some cases the derived rule base is hard to interpret. In this paper we discuss some approaches to improve the interpretability of neuro-fuzzy classi cation systems. We present modi ed learning strategies to derive fuzzy classi cation rules from data, and some methods ...
متن کاملA QUADRATIC MARGIN-BASED MODEL FOR WEIGHTING FUZZY CLASSIFICATION RULES INSPIRED BY SUPPORT VECTOR MACHINES
Recently, tuning the weights of the rules in Fuzzy Rule-Base Classification Systems is researched in order to improve the accuracy of classification. In this paper, a margin-based optimization model, inspired by Support Vector Machine classifiers, is proposed to compute these fuzzy rule weights. This approach not only considers both accuracy and generalization criteria in a single objective fu...
متن کاملMissing Values and Learning of Fuzzy Rules
In this paper a technique is proposed to tolerate missing values based on a system of fuzzy rules for classi cation The presented method is mathematically solid but never theless easy and e cient to implement Three possible applications of this methodology are outlined the classi cation of patterns with an incomplete feature vector the com pletion of the input vector when a certain class is des...
متن کاملThree-objective genetics-based machine learning for linguistic rule extraction
This paper shows how a small number of linguistically interpretable fuzzy rules can be extracted from numerical data for high-dimensional pattern classi®cation problems. One diculty in the handling of high-dimensional problems by fuzzy rule-based systems is the exponential increase in the number of fuzzy rules with the number of input variables. Another diculty is the deterioration in the com...
متن کامل